
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Invited Lecture. Defects in small-molecule and polymeric nematics
M. Klémana

a Laboratoire de Physique des Solides (associé au CNRS), Université de Paris-Sud, Orsay, France

To cite this Article Kléman, M.(1989) 'Invited Lecture. Defects in small-molecule and polymeric nematics', Liquid Crystals,
5: 1, 399 — 417
To link to this Article: DOI: 10.1080/02678298908026381
URL: http://dx.doi.org/10.1080/02678298908026381

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678298908026381
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1989, VOL. 5, No. 1, 399-417 

Invited Lecture 
Defects in small-molecule and polymeric nematics 

by M. KLEMAN 
Laboratoire de Physique des Solides (associt au CNRS), Universitt de Paris-Sud, 

BPtiment 510, 91405 Orsay, France 

After a reminder of the essential topological characters of defects in phases 
with nematic symmetries, a review is given of the observations of textures and 
defects in polymeric liquid crystals. Emphasis is placed on (a) the diversity of these 
observations according to the type and character of the polymer, and (b) the 
differences with small-molecule liquid crystals. However, the topological characters 
are common. The differences have to be explained in terms of molecular configu- 
rations. In this respect, we develop some physical consequences of the scarcity of 
chain ends, in particular a possible segregation and ordering process that relaxes 
strong splay deformations and that occurs in the cores of disclinations with a 
wedge character. After having discussed models of isolated disclinations, we 
investigate the possibility of the thermodynamical stability of sets of disclinations. 
We show that this problem has some analogies with the classical Flory-Huggins 
theory of the stability of polymers in solution, the disclinations playing here the 
role of the polymeric chains. Finally we indicate the existence of other features 
specific to polymeric nematics, apart from the question of chain ends, such as the 
correlations between chains and the related phenomena of frustration. 

1. Introduction 
Defects and textures in calamitic small-molecule liquid crystals are now well 

understood, at least as far as their static properties are concerned, and their dynamical 
properties are today the subject of intense studies [ 11. However, the recent synthesis 
of a large number of compounds possessing completely different architecture and 
displaying mesogenic properties, such as discotic, bowlic (pyramidic), sanidic and 
polymeric molecules, offers new prospects for research [2]. We shall restrict ourselves 
here to some aspects of the question of defects in thermotropic and lyotropic main-chain 
polymer nematics (see figure 1). A brief revision of the main concepts that have 
emerged from the study of small-molecule liquid crystals will be given first in order 
to illustrate the similarities and differences with polymers. Then we shall describe 
some of the results concerning the observations of defects in polymers; most of these 
observations were made with the help of the polarizing microscope. They are remark- 
able, not only because of the differences they display with respect to the usual liquid 
crystals, but also because of the diversity they show in polymers of different nature. 

The classification of the observations of defects in liquid-crystal polymers should 
obviously depend on factors such as the flexibility of the chains, the nature of the 
interactions that dominate the emergence of liquid-crystalline order, the molecular 
weight, the volume fraction in the case of lyotropics, etc. Our enumeration indicates 
clearly the nature of the problem: all of these factors refer to molecular properties. 
This is indeed one of the fascinating features of the study of defects in these 
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Figure 1. The architecture of a main-chain mesogenic polymer is made of successive rigid and 
flexible segments; the monomer is generally mesogenic. 

materials-that it relates so directly to local properties, which, as is well known, are 
quite difficult to grasp in the usual molten polymers or in polymer solutions. Such a 
situation does not occur, as a matter of fact, in small-molecule liquid crystals. Most 
of the observations made so far on defects and textures in liquid-crystal polymers have 
used polarizing microscopy; the resolution of this instrument is, of course, insufficient 
to offer a direct understanding of molecular properties , and much is expected from 
the development of methods that go to scales finer than the optical scale, such as 
freeze fracture or electron microscopy, although a number of interesting problems can 
already be solved through optical studies. Furthermore, we are far from being able 
to properly describe (i.e. classify) all of the various kinds of defects and textures 
observed (in this respect, our summary of the known observations in 53 is quite 
incomplete, which reflects our personal present knowledge of the subject, and demon- 
strates the difficulties encountered in combining results of so dispersed a nature), and 
still less able to relate them to the present theories of nematic order in liquid-crystal 
polymers. 

It is in order, at this stage, to give a brief overview of these theories, which are 
usually divided into rod-like model theories [3, 41 and worm-like model theories [5-81. 
However, the present status of the comparison between experiment and theory is so 
much in its infancy that such a review could be more confusing than helpful. We have 
therefore adopted the point of view of classifying the observations according to the 
nature of the defects (their strength, their contrast, their cores, and the types of 
deformation they are attended by). We summarize the corresponding situation for 
small-molecule liquid crystals in 52. From that point of view, the questions of the 
Frank constants K , ,  K2 ,  K, ,  of the bulk compressibility E - ' ,  of the density of chain 
ends, and of their kinetics of displacement seem to be of some importance. Some of 
these questions have already been raised by Meyer [9]. Furthermore, we shall see that 
the relative roles of the elastic terms (the Ki and E - I )  and of the entropic terms is of 
importance. Concerning the kinetic processes of chain ends in the displacement of 
disclinations, this is a problem that is far from being elucidated, and the thermo- 
dynamic (meta)stability of the observed textures must therefore be considered 
critically. 

In rod-like polymer situations [9] theory and experiment agree, giving a K2 
coefficient that has a value of the same order as in small molecule liquid crystals, a 
Kl coefficient of the order of 3K2, and a K3 coefficient that is the largest and probably 
scales with the persistence length (it diverges if the molecule is an infinite rod). In 
thermotropic media K2 is still small, and K3 probably scales in the same way, but the 
requirement of deformation at constant density forbids splay deformation (Kl  is 
infinite) if the chain length is infinite: if any splay deformation is necessary, it has to 
be achieved by hair-pins [lo] (see figure 2). Hair-pins of both signs exist in the 
undisturbed liquid crystal, and might also play a role in the dynamic properties [l 13. 
For chains of finite length, splay deformation can be achieved by a gradient of the 
density of chain ends (see figure 3); the corresponding splay constant AK,  can be 
estimated in a model in which the free chain ends are treated like an ideal gas [9] of 
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Figure 2. Hair-pins of the same sign create splay deformation. 

Figure 3. A gradient of chain ends creates splay deformation (redrawn from [9]). 

top, t, and bottom, b, particles: 

kT L A K  = -- 
I 4d d ‘  

Such a model, which allows a mass density that does not vary when the average 
density e of chain ends of one sign fluctuates (e x (Ldz) - l ,  with d the mean transverse 
distance between molecules) is valid for any splay deformation 1 div n 1 smaller than 
l/L. If the splay deformation is larger, we must use a model where the mass density 
does vary on a small scale, at the expense of some elastic energy and perhaps 
production of pairs of hair-pins of opposite signs. But if the splay deformation is very 
large, we might have to consider the possibility of segregation and ordering of chain 
ends, a process that leads to an elastic energy smaller than that determined from 
equation (1) and that depends on the type of ordering in the cluster. This is probably 
what happens in the disclination cores, as we shall argue. 

In polymers the stretching and longitudinal compression of the chains have to be 
described by a compliance E-I, which must be taken into account in the total elastic 
energy [12], not only in the infinite-chain limit, as just alluded to, but even for finite 
chains, as soon as the chain length is larger than 

A3 = ~ T C ( K , / E ) ’ ”  (2) 
provided, of course, that the persistence length A, is also larger than As. If we assume 
that the deformation created by a free chain end is equivalent to that of an edge 
dislocation loop of radius d and Burgers’ vector d, located in a plane perpendicular 
to the chain (see figure 4),  we find that its elastic energy scales like Kd(d/A,)’ x Ed3. 
With E sz IO’erg~m-~ and K, x 10-6dyn, we find As x 200A and Ed3 x 4 x 
1 0-3(d/A,)2 eV, a quantity that is rather small. Therefore entropy factors should 
always be taken into consideration, although they could be less important at low 
temperatures, or when E - ’  is small and d large, or if the pairing of two opposite chains 
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Figure 4. The dislocation model of a free chain end. 

ends decreases not only the elastic energy, but also the chemical energy (chemical 
bonding). 

We shall not exclude the possibility of the existence of liquid-crystal polymers in 
which I ,  < Is. This class of system would be extremely flexible, by definition; hair-pin 
production would therefore be the favoured mechanism of relaxation of the splay 
deformation. 

2. Small-molecule liquid crystals: defects and textures, a brief account 
The question of defects and textures can usually be treated under two headings 

[ I ,  131: (a) their classification with regard to the criterion of topological stability, which 
is related to the symmetry properties of the order parameter; and (b) their material- 
dependent properties, which include their energetic stability and the nature of the 
order in the core. 

2.1. Topological stability of defects in nematics 
In uniaxial nematics, the line defects are of two types; the lines of half-integral 

strength S = k +, f t ,  . . . , about which the director rotates by an angle of 2nS and 
which are topologically stable, and the lines of integral strength S = & 1, & 2, . . . , 
about which the director rotates by an angle 2nS and which are not topologically 
stable. Specifically, this means that, for an integer line, the director can escape into 
the third dimension (see figure 5) ,  leaving the core non-singular. If this process occurs 
(it is material-dependent), the integral lines show up as a blurred contrast under the 

Figure 5 .  Model of a non-singular core for a line of integral strength in a uniaxial nematic: 
(a) transverse cut; (b) meridianal cut with escapes along two opposite directions, and a 
singular point at the transition between the two escape modes. Radial geometry for the 
director. 
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Figure 6. Thicks and thins in a typical small-molecule liquid crystal (polarizing microscopy). 
Thread texture. 

polarizing microscope and appear thick, while the half-integral lines appear thin 
because the core region scatters light strongly. All of the half-integral lines are 
topologically equivalent (it is possible to smoothly transform half-integral line of any 
strength into a line of opposite strength-for a beautiful illustration of this topological 
phenomenon see [14]). The same is a fortiori true for integral lines. S lines combine 
and merge according to the rules of addition of the numbers S (see figure 6)-that is, 
since S is defined mod 1, according to the rules of multiplication of the abelian group 
with two elements B, [15]. For more details see the approach to topological stability 
in the homotopy theory of defects [13, 151. 

It is usual to make a distinction between wedge lines, which are parallel to the 
rotation vector, and twist lines, which are orthogonal to it. Wedge lines are visible in 
schlieren textures, and twist lines in thread textures (see figure 6). Smoothly trans- 
forming a wedge S line to a wedge - S line requires passage through a twist I S I line 
(see [14]). Point defects can be easily visualized as originating on integral lines at the 
encounter of two opposite escapes (see figure 5 (b)). 

While the classification and algebra of lines and points in uniaxial nematics [15] 
is quite easy to grasp physically, this is not the case for defects in biaxial nematics and 
cholesterics, which are both locally defined by three directors forming a tripod. In 
brief, line defects (in both cases) are classified by the quaternion group Q and combine 
and merge according to the rules of multiplication of this group [16]. However, lines 
of half-integral strength can still be defined [ I ,  171 (there are three sets of such lines, 
each one corresponding to one of the directors), but lines of integral strength divide 
into two classes: those of strength S = 2n + 1 are now topologically stable, those of 
strength S = 2n are not. Therefore only the latter can appear as non-singular in 
biaxial nematics. Additional important differences of topological origin between 
biaxial nematics and uniaxial nematics are (a) the absence of singular points in biaxial 
nematics (they are not topologically stable), and (b) the obstruction to crossing of two 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1
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mobile S = 
properties has ever been used up to now to characterize a biaxial nematic [17]. 

lines that do not belong to the same director. None of those 

2.2.  Material-dependent properties in small-molecule liquid-crystal uniaxial nematics 
The energy of a singular line of strength S is 

R 
rC 

W = unK,S21n- + w,, (3) 

where c1 is some geometrical coefficient, K, is some combination of the Frank constants 
K, ( i  = 1,2,  3 )  R is a typical macroscopic length (a distance between defects), rc is the 
size of the region where the order parameter is broken (the core) and w, is the core 
energy. 

The energy carried by the deformation around a non-singular line (necessarily of 
integral strength) is 

and does not depend on any length (the deformation spreads over all of the available 
space); of course, the core energy vanishes; K, is a combination of Frank constants, 
and is a geometrical coefficient. 

It is clear at first sight that any line of integral strength will favour a non-singular 
core, if K, B K,. In small-molecular liquid crystals where all of the Frank constants 
are of the same order of magnitude, this inequality is not satisfied and integral lines 
are always observed; most often they form Friedel nuclei, and carry singular points. 
According to Dzyaloskinskii [18], the only wedge, S = & 1, lines that are stable with 
respect to three-dimensional perturbations have a circular or a radial geometry; for 
a circular geometry the line energy is precisely [19] 

W = j 2 n K B S  (4) 

when assuming K,  > K2.  For a radial geometry we have 

(KI ’ K319 (6 )  W = n Kl + K3- )  k ( tanhk ’ Kl 
tanh2k = Kl - K3 

It is quite plausible that, in the case of equation (6) for example, the disclination 
might favour a pure circular disclination, with a singular core in the centre, if K3 is 
not much smaller than K , .  In order to decide which possibility will be realized, we 
need only compare nK, In (R / rc )  + wc and the value in equation (6). Similar compari- 
sons can be made for other situations depicted here and for S = - 1 lines. We see that 
the result depends on the nature and size of the core and on the anisotropy of the 
Frank coefficients. But note immediately that if singular integral lines are favoured, 
they will have a strong tendency to split into half-integral lines, since the energy now 
varies like Sz (see equation (3)). Therefore we expect that in all cases when the Frank 
constants show a large anisotropy, and if there exist core arrangements of not too 
prohibitive an energy, half-integral (thin) lines will be much more numerous than 
integral ones, and that those integral lines will be singular. This is obviously not the 
case in small-molecule nematics, where non-singular integral lines (and singular 
points) are predominant over other defects. 
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Invited Lecture: Defects in small-molecule and polymeric nematics 405 

We shall not discuss here the question of the core of disclinations in small-molecular 
liquid crystals (see e.g. [ I ,  13]), since we shall treat it for liquid-crystal polymers. But 
let us quickly mention point defects; their energy scales like K, R,  where K, is a suitable 
Frank-constant coefficient, and R is a typical macroscopic length. In the isotropic- 
elasticity case (Kl = K2 = K 3 )  the integral of the Frank free energy does not diverge: 
in other words, there is no mathematical core, and the physical core is of atomic 
dimensions, w, = 0. This is not so in the anisotropic case, when it is necessary to 
introduce a cut-off for the free-energy integral, i.e. a physical core. This interesting 
phenomenon has not been studied thoroughly. 

3. Same aspects of defects and textures in polymer nematics 
We discuss a certain number of observations according to the concepts just 

defined. 

3.1. Thins and thicks; singular points 
Most of the observations point to the predominance of thin line defects, which are 

S = 2 + line defects, or singular S = f 1 lines; this is in agreement with our discussion 
for anisotropic media. Thick lines are seldom observed. 

S = f f are clearly documented in tobaco mosaic virus (TMV) nematic solutions 
(freeze-etching observations [20]), where K3 is much larger than the other Frank 
constants, and in the C ,  polyester [21, 221 

H$Of O ~ C O . O ~ O . O C ( C H 2 ) ~ C O + O H  

x -24  

where it is Kl that is by far the largest Frank constant [23], as well as in certain 
copolyesters [23,24,26], for example of the type designated B-ET (supply by Eastman 
Kodak as X7G): 

[ H O . O C e O H ]  + [ HO(CH2)20H + H 0 . 0 C a C 0 . 0 H ] Q 4  
0.6 

They have also been observed in the schlieren texture of the same copolyesters. 
In the Cs polyester, thick integral lines have been observed-but extremely infre- 

quently; in fact their presence has helped to identify the thin lines as being of the 
half-integral type [21]. Integer lines have been observed in X7G under their thread-like 
shape [26]; when they are in association with half-integral lines, they obey the 
algebraic laws required by their merging (see figure 7). Integer lines also form schlieren 
textures, which are especially conspicuous when the sample is frozen to the nematic 
state from the isotropic phase [24, 25, 271. This behaviour seems to be characteristic 
of the copolyesters cited here. It is difficult to assess without doubt that the integral 
lines observed in the copolyesters are non-singular. Although their contrast under the 
polarizing microscope is quite fuzzy (as it should be for any non-singular integral 
line), it does not disappear completely when the polars are removed (as it would, in 
principle, if they were non-singular). 

Thin threads have been observed [28,29] in lyotropic solutions (in sulphuric acid) 
of semiflexible polymers (polyazomethines, polyterephthalamides, etc.) and in a 
nematic aromatic copolyester [30] of a remarkably high molecular weight and low 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



406 M. Klkman 

Figure 7. Half-integer and integer lines in the copolyester X7G (see text). Polarizing micro- 
scopy. Courtesy of F. Lequeux. 

viscosity ( M ,  N 220 000). These lines might be singular integer lines, as is claimed by 
the authors. However, direct measurements of the strengths are all lacking, Skoulios 
et al. [28] have argued that K, is very large in their sulphuric acid solutions of semi- 
flexible polymers, and have subsequently devised a model of pure radial integer lines. 

Singular points have never been reported in nematic polymers. According to our 
discussion (concerning the relationship between singular points and integral lines), this 
might indicate that most of the thin lines that are observed are not integral lines. 

It is interesting to notice that singular points have not been reported either in those 
copolyesters where integral and half-integral lines are both visible. It has been claimed 
by Viney et al. [31] that these copolymers are biaxial nematics. This interpretation is 
perfectly consistent with the present observations of defects: singular points are 
topologically unstable in biaxial nematics, and non-singular integral lines should have 
a strength that is an even integer ( S  = f 2 ,  4, . . .). It is quite possible that, by an 
extension of the arguments we have developed for the anisotropic uniaxial nematics, 
those lines are not energeticaZZy stable, in either their singular or non-singular mani- 
festations, in biaxial nematics. 

Samples of low-molecular-weight C ,  polyester exhibit textures and defects that are 
typical of small-molecule liquid crystals [21]. 

3.2. Cores of disclinations 
It is evident that, since the order parameter is broken there, the cores of defects 

should be privileged regions for the presence of chain ends and even for their 
segregation. In small-molecule liquid crystals [13] the core of disclinations is at least 
of molecular size, and its radius increases with temperatures, but systematic exper- 
imental studies are lacking. We want to comment on two observations of cores in 
liquid-crystal polymers. 
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The freeze-fracture experiments of Zasadzinski et al. [20] have shown that the 
S = f twist-line cores are of a molecular size in TMV nematic solutions: the virus 
reorients abruptly by 90" at the core, remaining in the plane of the disclination line. 
The wedge disclination core is several virus lengths in diameter and much more 
disordered, the viruses twisting out of the plane perpendicular to the line and into the 
direction along the disclination line. The twist lines seem more frequent than the 
wedge lines, which can be related to the smaller value of K2 (compared with K,  and 
K 3 ,  which is the largest Frank coefficient). 

The polarizing-microscope observations (see figure 8) of Mazelet et al. [22] of the 
C, polyester reveals that in free droplets the cores of the wedge parts of the half-integral 
lines are very large; the S = F 3 and the S = - f cases differ widely. In the first the 
molecules seem to stay in the plane perpendicular to the line, and the chain ends 
segregate in the core, while the off-core geometry implies essentially bend-and-twist 
deformation (K2 is small, K3 is larger than K2 but much smaller than K,) .  A schematica 
model is given in figure 9 (a). The S = - 3 cores show a typical three-fold symmetry 
with three spikes emerging from the core; these spikes have been interpreted as three 
wall-like regions where the chain ends segregate and twist out of the plane perpendicular 
to the line and into the direction parallel to the line; in the central part of the core itself 
the molecules are probably along the core (see figure 9 (b)).  These models are inferred 
from the contrast observed at large-scale deformation, but the calculations they 
suggest seem to corroborate them to some extent. 

For S = -3 the basis of the calculation is the Nityananda-Ranganath two- 
dimensional anisotropic model [32], modified slightly to take into account the vertical 
components of the director. One of the interesting aspects of this model is that it 
predicts that the motion of the configuration of the S = - 3 requires only a change 
of direction (by twist) of the molecular directions. This motion can be easy, which 
might explain the high mobility of these wedge S = -3 lines. 

We discuss in more detail the S = + f lines, for which we assume a very special 
type of segregation of free chain ends in the core. The model is inspired by the 
geometry of crystals bent under the effect of a density of dislocations, as devised by 
Nye [33] a long time ago, and we illustrate it in two dimensions (see figure 10). The 
polymer chains are represented in this figure by half straight lines, which are the 
analogues of the atomic rows in Nye's model; d, the mean distance between chains, 
plays the role of the lattice parameter in the transverse direction; the chain ends are 
dislocations of the lattice. Consider now a closed circuit ABCD, in which we have a 
two-dimensional splayed configuration with splay density 

1 
IdivnI = - 

r '  

where r is the radius of curvature of the normals to the polymer chains. The quantity 
AB - CD 

d 
s =  

measures the number of chain ends of the same sign, in the area bound by ABCD, 
unpaired with chain ends of the other sign; this geometry conserves the mass density. 
Consider now a circuit of infinitesimal side dr, we find that the surface density of chain 
ends obtained from this relation is p, (r )  = l /dr; the corresponding volume density is 

1 
d2r p ( r )  = -. 
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a1 b) 
Figure 9. Schematic models for (a) a wedge S = +) disclination; (b) a wedge S = -) 

disclination in a C5 polyester (K, 9 K3 > K2). Chain ends segregate either in the core 
in (a) or along three quasi-walls in (b). 

\ i  
\ I  

V 

density of dislocations. 

\ /  

Figure 10. A bent two-dimensional crystal where the bending energy is relaxed by a suitable 

Note at this stage that such clusters cannot be larger than L, if the chain ends of 
opposite signs are free (i.e. contribute to splays of opposite sign). But, of course, 
opposite chain ends can also be locked in pairs, an effect that leads to a larger effective 
L. Note also that if the chains are polydisperse, the regular arrangement of the chain 
ends of a given sign in the cluster, as described here, does not yield, fortunately 
enough, a regular arrangement of the other ends of the same chains. This is the 
situation we shall assume to exist; the opposite case, with monodisperse chains, would 
certainly lead to a situation of a quite different physical nature. 

We expect the cylindrical arrangement (as in equation (8) for a disclination line) 
to be of lower energy than the spherical one (as in equation (9) for a singular point). 
This property results from at least three causes: (a) the density of chain ends is larger 
in the second case; (b) for the same given volume, the surface that separates the cluster 
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from the normal region is larger in the spherical volume; this surface carries a 
transition wall of some energy, although this energy is small compared with the other 
contributions; (c) the elastic energy of an isolated free end is of order E = Ed:, to 
which must be added a chemical energy that we do not take into account since it does 
not depend on the neighbourhood of the chain. In a cluster of the Cylindrical type the 
energy, including interactions between chain ends, is of order (Ed2/4n) In (Z/d) per unit 
length of cylinder (i.e. for l / d  chain ends). This is the energy of a dislocation of 
Burgers’ vector d, located at a mean distance 21 = ( d e ( r ) ) - ’ / 2  from its neighbouring 
dislocations, with a core radius of order d. A simple calculation yields 

i.e. 

2 
d2rc ’ 

1 = (dr,)”2, 

- -  - 

where r, is the size of the cluster (and the core radius of the disclination). Since the 
total number of such dislocations in a cluster is #dnrz(e(r)) = nrJd, for a disclination 
of strength S = + f the total energy per unit length of the cylinder can be estimated 
as being of order 

I m, E d2  r, w, = -1n- 
2 d 4 n  d 

= E-ln- drc rc 
8 d  

(an exact calculation for a radial S = + 1 gives 
Edr, In 2). w, = 4(1 - V )  

For the spherical case (singular point) we expect the total energy per chain end to be 
proportional to EZ’3, where I‘ = Q - ’ ~ ~ .  The total energy of a radial cluster of size R, 
is therefore +nERb, which is larger by a factor of about nL/d than the ground-state 
energy ( E  x Ed3 per chain end), while the energy of the cylindrical region involves a 
factor of about L/4rC, which, as we shall see, is always much smaller than nL/d and 
even smaller than unity. 

Consider, therefore, an isolated disclination, located at some distance R from 
another; the total energy of the line involves a core energy w, (see equation (12)); an 
elastic energy anK In (Rlr,), where K is some Frank constant including K2 and K3 (of 
order f(K2 + K 3 )  presumably); a negative contribution, coming from the fact that 
nr,/d2 previously free ends (per unit length of line) are now involved in the dislocations 
of the core, and which is of the form - enr,/d2. The total energy of the line is therefore 

Edr, r, nK R Enr, 
8 d 4 r, d2 

W = ---ln-+--In---. 

We must seek the value of r, that minimizes W :  
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This expression vanishes only for E small enough compared with *Ed. This is the 
situation that we assume here. The core is large in these conditions (of order K/Ed M 

Iz(A/d)). The positiveness of d2 W/dr: ensures that such a situation is (meta)stable. The 
total energy at equilibrium is 

nK Re Edr, We, = -1n- - - 
4 rc 8 

nK R x -ln--, 
4 rc 

which is positive (by construction) but quite small. Here L2 = 4n2K/E. 
If E is larger than &Ed then the question of the stability of the disclination is of a 

very different nature. The chain ends tend to segregate spontaneously, as long as the 
loss in entropy of the free-end gas is not too large. This is the situation that we 
contemplate in $4. Another possibility is that twist disclinations are more favoured 
than wedge disclinations, as observed in TMV solutions [20]. But we have no way to 
theoretically attack this problem of the nature of the core as a function of the type 
of defect-wedge or twist-with our present tools. 

The large core radius that we have,obtained might fit the observations made in a 
thermotropic material like the C ,  polyester, where d is of order a few Angstroms and 
;1 a few tens of Angstroms. Equation (14) can also be used for a lyotropic polymer, 
and yields a smaller (d  is still the distance between the chains) but still large core 
radius. 

3.3. Textures 
Individual defects in liquid-crystal polymers show large differences with individual 

defects in small-molecule liquid crystals of the same symmetry. This is also the case 
for their textures. 

Starting from the isotropic high-temperature phase, the nematic phase that first 
appear is usually very disordered at the micrometre level, in a sample of a few tens 
of micrometres thick. This disordered phase relaxes very slowly when the temperature 
is kept constant. It yields a schlieren texture of a very fuzzy nature in copolyesters, 
quite often made up of integer lines [24, 27, 301. In polyesters thin lines appear after 
some time, but they are more readily obtained when the sample is prepared directly 
in the nematic phase, by introducing the material by capillarity between the glass 
plates [21]. 

Apart from these schlieren textures, two well-characterized types of texture are 
currently distinguished in liquid-crystal polymers: (1) a threaded (or line) texture 
made up of individually recognizable disclinations; and (2) an ill-defined texture 
probably made up of an entanglement of disclinations, and which, when relaxing, 
gives rise to the first texture. Such textures have been observed and described in detail 
in lyotropic nematics of the polyazomethine or polyamide type in sulphuric acid 
128, 291 and in some copolyesters [34], where the ill-defined texture is designated a 
worm-texture. The relaxation time z of the ill-defined texture (which can be obtained 
by shearing or compressing the specimen) has a remarkable behaviour. It does not 
seem to depend on any parameter other than the density e of free chain ends and, in 
thermotropics, on the temperature; for example, it does not depend directly on the 
viscosity. z increases when e x (Ld2)- '  x 4 / M  decreases. This behaviour has been 
critically tested in lyotropics, in which a threshold ratio (+/LW)~ z lo-' has been 
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412 M. Kltman 

discovered, below which t becomes so long that the ill-defined texture does not 
disappear in the time of an experiment. This is explained tentatively by Millaud et al. 
[28] as being due to a longer time of diffusion of the free ends towards the cores of 
the defects when e is smaller. But it might well be that below ( $ I / M ) ~  the ill-defined 
texture is thermodynamically stable. We shall try to discuss this hypothesis in the 
model presented in $4. In thermotropics the behaviour of z has been tested with 
respect to M ,  the viscosity, and the value of the applied shear. Worm textures that do 
not decay in the course of time have been observed for large M .  Furthermore, t 
increases with decreasing temperature, a fact that seems to indicate that the ill-defined 
texture has to be activated from the line texture. Shear goes in the same direction as 
temperature, in this respect, since it provides the energy necessary to overcome some 
barriers. In fact, when shear is increased and then the worm texture (which becomes 
optically isotropic when the shear is very large, since the defects, which multiply under 
increasing shear, become so small) is allowed to relax, it transforms to a striated 
texture perpendicular to the direction of shear. This phenomenon has been observed 
in copolymers [34, 351 as well as in solutions of semiflexible polymers like PBLG [36] 
and HPC [37] (hydroxypropylcellulose), which are cholesteric. 

4. Cooperative effects between disclinations 
We now investigate the stability of sets of disclinations by introducing entropy 

terms. We shall restrict attention to a two-dimensional model, in the sense that we 
consider parallel disclinations at a mean distance R.  This simplifying hypothesis 
affects mainly the configurational entropy of the lines, which should be greater in a 
three-dimensional calculation, therefore enhancing the tendency to stability. However, 
we shall superimpose on this pure two-dimensional model a phenomenological length 
Lo, which measures some persistence length along the disclinations, or some mean 
radius of curvature of the lines. 

4.1. The energy and entropy terms 
Let c be the proportion of free ends that segregate along the disclination cores. We 

do not care about numerical factors of the order of 2 or 3 coming from the fact that 
in reality we should consider disclinations of both sign. The total line length per unit 
volume is 

cd2 = -  1 
R2 2nr,vc 
- 

R is again the mean distance between disclinations and v, x nLd2 is the volume 
occupied by a chain. The energy of the disclinations (irrespective of entropy) is the sum 
of the core energies and of the line energies: 

+ -1n- - - - Kln- 
cd2 n 2nv, Edr, r, - 

- -( 2nr,vc 4 crcd2 8 d 

where we have taken care to introduce the gain in energy due to the fact that some 
proportion of chain ends are no longer free. With regard to the entropy contributions, 
they are of three origins: first, the variation of entropy that comes from the fact that 
the ideal gas of free ends now contains N(l - c) particles, N = V / v ,  for a volume V ;  
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secondly, the configurational entropy of the disclinations; thirdly, the excluded volume 
due to the cores of radius r,. 

The first contribution is calculated by assuming that the total number of states 
available to the N (or N(1 - c)) particles in volume V (whose variation brings a 
negligible contribution) is V/v, where v, is the effective volume of a free chain end, and 
is of order d3 at least, but its precise value does not matter. We then find 

AS(’) = -Ncln - e  - N ( l  - c)ln(l - c), (:: ) 
i.e. a free-energy density 

It is noticeable that it is the positive term c In (v,e/v,) that then prevails. It compensates 
the E term inf,, and must be larger than or of the same order of magnitude as the E 

term in the nematic phase. 
The entropy term due to the disclination lines is calculated in the framework of 

a model for a two-dimensional ideal gas, with X/nr,” states available in a surface of 
area C, and X/R2 particles. This yields a number of different states equal to 

i.e. an entropy term 

and a free-energy density 

kT d2c cr,d2 
v, 271rcL0 2evc 

f@’ = - - ln-, 

where Lo is a typical persistence length along the disclination (it measures its flexibility 
and cannot be smaller than d, but is certainly much larger than d in  a thermotropic 
nematic). Finally the excluded volume yields a term that we estimate as being of order 

kT c2d4 
fJ3’ = - - 

v, 271vcL0’ 

where we have assumed that the volume excluded by a disclination is u = 4.nrEL0 and 
used Onsager’s calculation for solid spheres [3], transposed for parallel cylinders of 
length Lo. f,’) provides the only term that is proportional to c2 in the total free-energy 
density 

f = f , ,  + .p + + 
Let us note that c is, up to some irrelevant factor, nothing other than the density 

of disclinations. It is then interesting to note the analogy between the free energy we 
have obtained and the free energy of polymer chains in a solvent-the so-called 
Flory-Huggins free energy [38]-the disclinations playing the role of the Flory- 
Huggins polymer chains. The analogy can easily be pushed further by examining the 
entropy termsh(’) (in which the term linear in c plays a trivial role) andf,’). More 
precisely, if we perform a Legendre transformation f + cp = f - c(af/ac),, we find 
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the very simple expression 

"[ ( + ln(1 - c) + - - -- , (22) cp = - c 1 - -  1 Kd2c 8r,v, kT  v, 271v,L0 C2d4 vc 

where r,  is a function of c obeying the minimization equation 

($)c = 0. (23) 

In the Flory-Huggins formulation the energy density cp of a solution of chains with 
r~ monomers each has the form 

We notice immediately by comparing equations (22) and (24), that o = 21~r ,L , /d~  is 
the effective length of the disclinations, and that the excluded-volume term provides 
a negative contribution to x, i.e. our system has the behaviour of a good solvent (the 
effect of the excluded volume is of course repulsive). We now estimate the role of the 
K term in equation (22) by a complete calculation. 

We first estimate r, by using equation (23), and find 

k T  IT 2nK* 2nev 
r, = 8 -  In- + -In" 

L,Ed e Ed cr,d2' 

where K* = K - 4kT/nL,  is of order K, since Kd is much larger than k T  in most 
nematics. We therefore find the same order of magnitude for r, in this case as for an 
isolated disclination (rc cc r,* = 2nK*/Ed).  However, stability requires that the 
logarithmic term be positive, i.e. 27cev, > crcd2. For the same reason of stability we 
must have negative, and this condition leads to a quite similar inequality. Since 
we can show that, at equilibrium (which is obtained by cancelling the other first 
derivative, (dfidc), = 0),  c is itself large, this implies that L must be sufficiently large 
in order to obtain this type of cooperative behaviour of disclinations. Note also that 
both conditions can be written approximately as 

rz < R2,  

which is the condition for small dilution for disclinations. 
Equation (25) allows us to express c as a function of r , ,  and hence to evaluate the 

contribution of the K term (see equation (22)) to the curvature of the free energy cp 
near any value of r , .  At equilibrium, we have not only (dfldc), = 0 but also 
(i3fldr,)c = 0. Let r, and c, be a set of values of r, and c that satisfy these equations. 
Let dr, and dc, be small variations of rc and c near ro and co, obeying equation (25). 
We find from equation (25) 

d(r,c,) = - ro co 
r* 

dr,- . 

This equation can also be written, with r,c = roc, + d(r,c,) as 

cr, = roc, ( 1  - 9). 
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Therefore the K term in equation ( 2 2 )  also contributes to X. Comparing 

Kd2 
X I  = ~ 4c0 ro k T 

and 
d 4  x2 = -- 

we see that I x2 l/xl - kT/L,,K, which is less than 1. The K term is therefore predomi- 
nant, except for large temperatures, perhaps in relation to a nematic-isotropic transition 
driven by defects. But for typical values of I x2 l/xl the condition of a good solvent 
requires I xI  I < 4, i.e. approximately 

2nvc Lo ’ 

Kd’lL < AkT, (26) 
where A is some numerical factor of order perhaps 10. Such a condition is generally 
satisfied. 

It remains to consider the complete solution, which satisfies (af/dc),c = 0, and to 
establish the conditions for stability of this solution (82f8c2 > 0,  aZf/dr: > 0, 
(a’flac’)(awlar,’) - (a2f8carC)’ > 0). The equation (afla~),~ = 0 is easily written in 
the form 

(27) 
E d2 Ed3 rce 
2 4rc 16n d 

+ -EL] = - + - K *  - -In-, kT [In “ 
v,(l - c) nvcLo 

where use has been made of (aflar,), = 0. Taking r, = r:, the quantity 

which appears on the right-hand side of equation (27), must be positive since the 
left-hand side is positive. We therefore see, as expected, that E must be large enough 
in order for the existence of cooperative effects of the kind considered here. The 
condition A E  > 0 is quite critical, since E is of order Ed3. Furthermore, assuming that 
the second term on the left-hand side is small, we see that 

(28)  

where 1 - c,, = nvc/v ,  cannot be larger than unity; this seems to indicate that we 
have to take for v, an effective volume of chain ends that is much larger than d 3 ;  this 
property is probably related to the fact that the chain ends are not independent, and, 
strictly speaking, do not form an ideal gas. The most important property of equation 
(28) is that c decreases when the temperature increases. This is in agreement with the 
physical assumptions involved in this theory (the system does not want to lose too 
much entropy of free chains at high temperature, since the entropy carried by the lines 
of defects does not compensate it enough if the rigidity Lo of the defects is too large) 
and also in accord with some observations reported earlier [35]. 

As far as the stability conditions are concerned, they are all of the form 

Kd2 8BkTc 
- < -, 

r, 1 - c  
where B is a coefficient of order unity; this is a condition that is more difficult to satisfy 
than equation (26), it requires either a high temperature or large r,c, i.e. large L. 
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Although this last result (large L)  is similar to the experimental results quoted 
previously [29], it is not exactly the same (the threshold in [29] is proportional to Ld2, 
and not L). 

The transition to the cooperative behaviour of disclinations occurs when the 
equality is satisfied in equation (29). The free energy (see equation (22)) decreases 
sharply when this threshold is reached, as can be seen by a calculation of the order 
of magnitude off. It is remarkable that, according to out discussion of equation (27), 
the theory predicts that the density c of segregated chain ends and the density of 
disclinations decrease as the temperature increases (in other words, we are not 
considering anything like an ordinary phase transition driven by defects, which could, 
of course, exist as well). However, we propose this result as an element for discussion, 
rather than something well established, because of the crudeness of some of our 
assumptions-in particular, the assumption that the free ends do not interact and the 
way we have approached the entropy of the lines in a quasi two-dimensional model 
(the use of Lo). We have also already mentioned the open question of the kinetics of 
chain ends. 

5. Conclusion 
We have tried in this paper to indicate the main physical aspects related to the 

scarcity of chain ends in a nematic polymer. Some of these aspects are experimental, 
and illustrate the importance of the phenomena of segregation of the chain ends in 
disclination cores at the expense of entropy and the possibility of cooperative 
phenomena. We have discussed theoretically some of the ingredients of these coopera- 
tive phenomena. The discussion shows the limitations always met in all of these types 
of problems, where we expect a phase transition in the presence of defects [39], but 
it is expected, owing to the specificity of the mechanisms met here, that such an 
approach might prove fruitful. 

There are other characteristics (apart from free chain ends), not mentioned in this 
article, that make liquid-crystal polymers fascinating media for the study of defects. 
One of them is the possible existence of correlations between neighbouring chains, 
either orientational correlations, which we expect to be at the origin of biaxial phases, 
or positional correlations (i.e. the tendency to compacity) in competition with a 
mutual twist. These latter are probably at the origin of the phenomena offrustration, 
which has been invoked to explain some particular geometries of defects in cholesteric 
polymers of biological origin (DNA in the chromosome of dinoflagellates, pre- 
cholesteric phases, etc.) [40]. 
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